Crystal structure prediction by data mining
نویسندگان
چکیده
منابع مشابه
Data Mining Approach to Ab-Initio Prediction of Crystal Structure
Predicting crystal structure is one of the most fundamental problems in materials science and a key early step in computational materials design. Ab initio simulation methods are a powerful tool for predicting crystal structure, but are too slow to explore the extremely large space of possible structures for new alloys. Here we describe ongoing work on a novel method (Data Mining of Quantum Cal...
متن کاملData Mining for Structure type Prediction
Determining the stable structure types of an alloy is critical to determining many properties of that material. This can be done through experiment or computation. Both methods can be expensive and time consuming. Computational methods require energy calculations of hundreds of structure types. Computation time would be greatly improved if this large number of possible structure types was reduc...
متن کاملPrediction of Student Learning Styles using Data Mining Techniques
This paper focuses on the prediction of student learning styles using data mining techniques within their institutions. This prediction was aimed at finding out how different learning styles are achieved within learning environments which are specifically influenced by already existing factors. These learning styles, have been affected by different factors that are mainly engraved and found wit...
متن کاملA Consensus Data Mining secondary structure prediction by combining GOR V and Fragment Database Mining.
The major aim of tertiary structure prediction is to obtain protein models with the highest possible accuracy. Fold recognition, homology modeling, and de novo prediction methods typically use predicted secondary structures as input, and all of these methods may significantly benefit from more accurate secondary structure predictions. Although there are many different secondary structure predic...
متن کاملAlert correlation and prediction using data mining and HMM
Intrusion Detection Systems (IDSs) are security tools widely used in computer networks. While they seem to be promising technologies, they pose some serious drawbacks: When utilized in large and high traffic networks, IDSs generate high volumes of low-level alerts which are hardly manageable. Accordingly, there emerged a recent track of security research, focused on alert correlation, which ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Crystallographica Section A Foundations of Crystallography
سال: 2002
ISSN: 0108-7673
DOI: 10.1107/s0108767302099737